
The origin of the concept of measurement reliability is usually

traced back to the contributions of Charles Spearman and

Edward L. Thorndike in the first decade of the 20th century (cf.

Crocker & Algina, 1986; Stanley, 1971). In the intervening

century, this topic has become increasingly complex as

evidenced by R. L. Thorndike (1951), Stanley (1971) and Feldt and

Brennan (1989) in the successive editions of the encyclopedic

Educational Measurement. At the same time, Li, Rosenthal and

Rubin (1996) consider reliability to be one of the fundamental

notions common to all fields of psychology so that “an

understanding of (it) helps define us as psychologists” (p. 98). A

clear understanding of this complex topic is important not only

for applied psychologists who wish to justify their conclusions

made on the basis of tests or other measurement procedures; it

is equally important for all researchers who use such

instruments to assess variables of interest to their research.

Reliability derives its importance from the statistical limit it

imposes on validity (Schmidt & Hunter, 1996). To the extent that

a variable is not measured perfectly reliably, that is, to the extent

that measurement error is present, its observed correlation with

any other variable is attenuated. As a consequence, the

magnitude of effect size estimates is reduced and the probability

of obtaining statistically significant results is diminished.

Wilkinson and the APA Task Force on Statistical Significance

(1999) deemed the effect of reliability on the magnitude of

effect size estimates so important that they made an assessment

of reliability mandatory for the interpretation of such estimates.

If one considers the manner in which reliability information is

presented in most research reports, one may be forgiven for

getting the impression that reliability is a fixed, immutable

property that inheres in a particular measuring instrument, and

that it may be estimated equally acceptably by different

methods. Instead, there are several sources of measurement error

(e.g., test items, test occasions, their interactions with test

participants, random response) which may differ in their

respective attenuating effects on reliability. This multifaceted

nature of measurement error is certainly not new. Six and a half

decades ago, Hoyt (1941) and Jackson and Ferguson (1941)

introduced the estimation of separate error variances within an

analysis-of-variance framework. A few decades later, Gleser,

Cronbach and Rajaratnam (1965) and Cronbach, Gleser, Nanda

and Rajaratnam (1972) further developed this approach into a

fully-fledged theory, known as generalisability theory. However,

the continued reliance on methods that estimate a single,

undifferentiated error variance may reinforce the notion that the

error arising from different methods is overlapping or

substitutive rather than cumulative. In the process the true

magnitude of some sources of error variation, particularly that

due to transient error, may go undetected.

Recently, three procedures have been developed within the

classical test theory tradition to remedy this situation. The

general purpose of this article is to revisit the multifaceted

nature of measurement error and to review these approaches, to

report the empirical evidence on the potency of transient error

as revealed by these methods, and to compare these new

approaches with generalisability methodology. However, first a

brief review of reliability theory and estimation is in order to

provide a framework for the remainder of the article. 

DEFINITION AND ESTIMATION OF RELIABILITY

Reliability may be defined either statistically or in nontechnical

terms. Whereas the latter is designed to convey an intuitive,

conceptual understanding of this concept, the statistical

definition makes it possible to quantify it. First the statistical

definition will be presented and later two definitions that are

formulated in laypersons’ terms will be quoted.

In classical test theory an individual’s observed test score is

decomposed into only two undifferentiated sources of variance:

Observed score = True score + Error Score. (1)

The true score in classical test theory is defined as the mean of

all the scores a person would have obtained if he or she has

taken the test an infinite number of times, each time attempting

the test as if for the first time (i.e., in the absence of any transfer

effects such as practice, memory or fatigue). This notion of a

true score as the constant, systematic component of an

individual’s observed scores over such independent repetitions,

called replications, should be distinguished from what has been

referred to as the platonic notion. The latter concept refers to a

person’s actual standing on the attribute in question, as

supposedly known by some omniscient being.

For any particular individual the observed score may be expected

to fluctuate around his or her (constant) true score, sometimes

exceeding it and sometimes falling below it. The resulting

deviation of the observed score from the true score is known as

the error score. Just as the present definition of a true score

should be understood as a statistical entity, so error scores

should not be interpreted as mistakes but merely as residual

scores, that is, as the deviations of observed scores from true
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scores. Suppose the practice examples of a maximal-performance

test, which all test participants typically answer correctly, are

inadvertently counted as part of the total test score. As this

(constant) marking error would be incorporated into the true

score, it would mean that all participants’ observed scores and

true scores are increased by a constant (equal to the marks

earned by the practice examples), but that the error scores would

remain the same. 

Now, if a population of individuals were to take a test repeatedly

an infinite number of times without there being any transfer

from one test application to the next, each of the components in

Equation (1) may be expected to show some variance across

individuals. Although the true score is a constant for any

particular individual, it has different values for different

individuals and so generates a (true-score) variance. Under

certain assumptions (cf. Lord & Novick, 1968) the variance of the

observed scores will then be equal to the sum of the variances

associated with each of the two components on the right-hand

side of Equation (1):

�²observed = �²true + �²error. (2)

In terms of this exposition, then, reliability is defined

statistically as the ratio of true-score variance to observed-score

variance, which may be interpreted as the proportion of

observed-score variance that is attributable to true-score

variance,

�rel = �²true/�²observed. (3)

If one solves for �²true in Equation (2) and substitutes the result

into Equation (3), we obtain:

�rel = [1 – (�²error)/(�²observed)]. (4)

Equations (3) and (4) define reliability in terms of quantities

that are not directly observable. The concept of parallel tests

makes it possible to estimate reliability empirically. Any

particular individual’s true score (i.e., his or her mean over

replications) on two strictly parallel tests is defined to be equal.

This means that strictly parallel test forms or, simply, parallel

tests, are equally difficult or equally attractive (in typical-

performance tests) for a population of individuals. Every

individual in a population of persons also has equal error-score

variances and, as a result, equal observed-score variances over

replications of such tests (as �²true = 0 for any given individual),

implying that whatever these tests measure, they do it equally

well. The error scores on one parallel test are uncorrelated (over

participants) with those on another parallel test and

uncorrelated with the true scores on another parallel test. In

terms of the foregoing, reliability may be defined statistically as

the correlation between strictly parallel tests, X and X’.

�rel = �XX’.

Against this statistical background, let us consider two

nontechnical definitions of reliability found in the introductory

textbook of Anastasi and Urbina (1997, p.8), namely, that 

Test reliability is the consistency of scores obtained by the

same persons when retested with the identical test or with an

equivalent form of the test,

and that of Crocker and Algina (1986, p. 105), stating that,

…(R)eliability is the degree to which individuals’ deviation

scores, or standard scores, remain relatively consistent over

repeated administration of the same test or alternate test forms.

In their treatment of reliability estimation, textbooks would

typically refer to the test-retest method, the parallel-forms

method and various internal-consistency methods, which

include the split-half methods and coefficient alpha (Cronbach,

1951). In the test-retest method, the same test is administered on

different occasions and the correlation between the two data

sets so obtained is known as the coefficient of stability. To the

extent that there is transfer from the first to the second

application of the same test, or to the extent that participants

(incorrectly) interpret the second administration as a test of their

consistency in responding, the two applications of the same test

do not meet the independence assumption referred to above. As

a result, the interval between the two test occasions should be

long enough to eliminate possible transfer effects but not too

long so as to avoid permanent changes from occurring in the

attribute being measured. However, as the content of different

parallel forms is not the same, such tests may be applied in close

succession as no extended interval is necessary to eliminate

memory or false consistency effects. The correlation between

the two data sets obtained by administering parallel forms on

the same occasion is known as the coefficient of equivalence. The

correlation between parallel test forms administered with a time

interval in between is referred to as the coefficient of equivalence

and stability.

Split-half coefficients, derived under the assumption that the

test halves are parallel, or essentially tau-equivalent, and

coefficient alpha, which assumes essentially tau-equivalent

items, are coefficients of internal consistency. Unlike parallel

components (items or subtests), essentially tau-equivalent

components may show different true scores for any particular

individual, but for all individuals these true scores differ by the

same additive constant: if this constant is, say, +0,85, for every

individual the true score on the one component will be 0,85

points higher than that on the other. These assumptions make

it possible to estimate the reliability of a full-length test in

terms of parts (halves or items) of the test. In the case of

coefficient alpha (or the Rulon-Flanagan split-half methods),

the obtained coefficient is also an estimate of the correlation

between the existing test and another so-called randomly

parallel test. Randomly parallel tests are comprised of random

samples of comparable items (Cronbach, 1951).

Hogan, Benjamin and Brezinski (2000) studied the frequency

with which these various types of reliability methods had

occurred among all the reported reliability estimates in the

American Psychological Association’s Directory of unpublished

experimental mental measures. They found that coefficient

alpha was used in two-thirds of all the cases, that test-retest

reliability was determined in slightly less than one-fifth, with all

of the other methods featuring in less than 5 per cent of the

cases. The reason for the popularity of coefficient alpha is

obvious: it requires that only one form of the test, typically the

only form available, be administered only once. Moreover, its use

exempts one from making the complicated decision on how to

split the test into equivalent halves as is required in the case of

the split-half methods.

The test-retest method requires considerably more effort than

the internal-consistency methods as it requires that the same

test be administered twice. Apart from the extra time taken up

by such repetition, there is the difficulty of collecting all of the

test participants from the first administration for the purposes

of the second administration. The Hogan et al. review found no

reports in which the parallel-forms method was used. This is

not surprising considering that this method exacts an even

greater input in terms of time and especially finances as it

requires that another test be constructed so that the two tests

meet the statistical requirements of strict parallelism. Strictly

parallel test forms are sometimes required to double-check the

unconvincing performance of participants on an earlier

application, or to gauge, by means of a posttest, the

effectiveness of an intervention that was designed to induce

change (in the attribute being assessed). However, it may be

considered to be unnecessarily restrictive to construct a strictly

parallel test solely for the purposes of investigating reliability.
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As the estimation of the coefficient of equivalence and stability

additionally requires that the two test forms be administered

on separate occasions, it is the most labour-intensive of all the

reliability estimation methods.

ESTIMATING UNDIFFERENTIATED ERROR THAT

TYPICALLY EXCLUDES TRANSIENT ERROR

The or in the two nontechnical definitions above may be

interpreted to mean that reliability is an immutable property that

may be estimated by any of the methods mentioned above and

that the results of these methods are interchangeable. This would

be the case only if, in terms of Equations (1), (2) and (4), the

measurement error estimated by one method were the same as

that estimated by any other. However, a moment’s reflection

would reveal that different estimation methods are susceptible to

different kinds of measurement error. Apart from random

response error, the major sources of measurement error in

psychological testing are transient error and specific-factor error

(Schmidt, Le & Ilies, 2003). (R.L.Thorndike, 1951, provides a more

exhaustive catalogue of potential sources of measurement error.)

Random response error is due to momentary fluctuations in test

participants’ responses that cause the same individual to provide

different answers to even comparable items on a particular

application of the same test. Whereas random response error

manifests itself across items administered on the same test occasion,

transient error refers to sources that affect participants’ test scores

in different ways on different test occasions. This kind of error may

be due to the mood or mental agility of the respondent at the

occasion he or she completes the test. On one occasion the test

participant may be in an upbeat mood and readily tackle and solve

questions that he or she may miss on other occasions when, say, his

or her blood sugar level is below normal. Moreover, any particular

individual’s mood or readiness status will affect his or her responses

to all items on a particular test occasion causing him or her to

respond more similarly to items within an occasion than across

occasions. In analysis-of-variance terminology this means that a

participant-occasion interaction is present.

Specific-factor error sources involve those that are specific to the

content of a particular test form (but not to that of another). To

the extent that the sample of content reflected in a particular test

is more familiar to some participants than to others of the same

standing on the attribute being measured, specific-factor error

variance is present. (The term specific factor derives from factor

analysis where a common factor is defined by several variables

whereas a specific factor is characterised exclusively by a single

variable.) Due to a chance familiarity with, for example, the tools

appearing in the items in one mechanical reasoning test, one

participant may obtain a higher score on that test than on another

test that equally effectively could have been used in the place of

the present one. Another person, again, may disproportionately

benefit from the inclusion of content in the latter rather than the

former test so that a participant-test form interaction is present.

So, a more representative picture of what is at stake may be

obtained by decomposing the undifferentiated error score

component in Equation (1) as follows:

Observed score = True score + Transient error score + Specific-

factor error score + Random response error score.

As a result, the undifferentiated error-score variance, �²error , in

Equation (2) should be replaced by separate variance terms for

each of transient, specific-factor and random response error

(providing, of course, that the data collection design involved

allows for their separate estimation), and Equation (4) should be

rewritten as follows:

�rel = [1 – (�²transient error + �²specific-factor error

+ �²random-response error)/(�²observed)] (5)

The inability to estimate any kind of error means that the

corresponding component in the numerator of the ratio on

the right-hand side of Equation (5) is not estimated. As a

result, the right-hand side of the entire equation, that is,

estimated reliability, is increased. Stated in terms of Equation

(3), the variance of the error component that is not assessed by

a particular method is incorporated into the true-score

variance, resulting in an overestimate of reliability yielded by

that method. 

Now, in the test-retest method the same test is administered on

different occasions so that transient error complements the

error-score variance in Equation (5) and so reduces the

coefficient of stability. But because this method involves the

same test form, it is not susceptible to specific-factor error, so

that variance due to the latter is missing from the error variance

in Equation (5) but is incorporated into the true-score variance

in Equation (3) and, hence, increases reliability in terms of both

equations. (Moreover, in the test-retest method memory effects

will spuriously raise the obtained correlation whereas

permanent changes of different degrees in different participants

will spuriously lower it.) Because parallel test forms contain

different content, the coefficient of equivalence, in common

with the coefficients of internal consistency, including

coefficient alpha, is susceptible to specific-factor error and

consequently is attenuated by it. If the two tests forms are

administered under the same temporary factors, this coefficient

is unaffected by transient error as it assigns transient error to

true-score variance, resulting in a higher value for Equation (3).

However, the coefficient of equivalence and stability is depressed

by the effects of both transient and specific-factor error. Feldt

and Brennan (1989) give the exact formula for the reliability

coefficient for each of these situations and these formulae show

the sources of variation they respectively treat as true-score and

error variation. 

From the above it follows that the reliability estimates resulting

from different estimation methods are reduced by different

sources of measurement error. Consequently, an estimate that

doesn’t take account of all of them, results in an overestimate.

Becker (2000) uses the terms complete reliability and partial

reliability to distinguish between estimates that are susceptible

to both specific-factor error and transient error, on the one hand,

and estimates that are affected by specific-factor error only (i.e.,

apart from random response error), on the other hand. As

neither the coefficient of stability, nor the coefficient of

equivalence, or any of the internal-consistency coefficients, are

susceptible to both kinds of measurement error, all of them fail

to reflect complete reliability. As the coefficient of stability and

equivalence is affected by both kinds of measurement error, it is

considered to be the best or most inclusive method of estimating

(complete) reliability.

From the preceding it is clear that statements such as

“(r)eliability was estimated by means of Cronbach’s coefficient

alpha” may be misleading to the extent that they suggest that

this coefficient has been chosen among several interchangeable

methods to estimate reliability. It may also be misleading to state

that there are different kinds of reliability (cf. heading on p. 91

of Anastasi & Urbina, 1997) if these different kinds are thought

to refer to different methods to estimate the same error in

Equations (2) and (4). Rather, it would be more appropriate to

state that there are different kinds of measurement error that

may reduce the size of the reliability coefficient. These kinds of

measurement error are not interchangeable or substitutive, but

cumulative. Neither the test-retest method nor the undelayed

parallel or the internal-consistency methods are capable of

estimating both kinds of measurement error simultaneously and

either one of these methods overestimates complete reliability.

Recent proposals to estimate reliability inclusively

Despite the common knowledge about the multifaceted nature

of measurement error, the Hogan et al. (2000) study suggests
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that the majority of reliability studies have resorted to internal-

consistency methods, particularly coefficient alpha, which is

unaffected by transient error. However, the first few years of the

21st century have seen three proposals that have been

formulated within the classical test theory tradition to address

this situation. The designs proposed by Becker (2000), Schmidt

et al. (2003) and Green (2003) are intended to investigate

complete reliability in the absence of parallel test forms.

However, all of them require that either the full-length test or

two parallel halves be administered on two separate occasions.

This makes it possible to obtain a coefficient of equivalence and

stability (CES) as a (complete) reliability estimate which is

susceptible to both specific-factor error and transient error.

These methods also allow for the computation of a coefficient of

equivalence (CE) as a (partial) estimate that is affected by

specific-factor error only. If one subtracts the complete estimate

(which may be expected to be smaller as it is affected by both

specific-factor error and transient error) from the partial

estimate, an estimate of the proportion of transient error

variance is obtained.

Becker (2000) suggested a staggered equivalent (Rulon-Flanagan)

split-half procedure that requires that the test be split into two

strictly parallel test halves. Becker reviewed several approaches

to optimise equivalence for such test halves and then expressed

his preference for a factor analysis of the items and their

assignment to the two halves in terms of the size of their

loadings (on the general factor), their means and standard

deviations. The test participants are divided into two groups and

on the first occasion the two groups complete different halves,

and on the second occasion each group takes the half not done

on the first occasion. (This counter-balancing is intended to

control for possible order effects.) This operation results in four

sets of item data. A CE estimate for the full-length test is

obtained by (i) computing coefficient alpha for each of the four

sets of item data separately, (ii) taking the mean over all four

estimates so obtained (which then reflects the coefficient of

equivalence for a half-test), and (iii) stepping this mean up by a

factor of 2 by means of the Spearman-Brown formula. A CES

estimate for the full-length test is determined by (i) calculating,

for each group separately, either coefficient alpha or the Rulon-

Flanagan split-half reliability for the combination of the test

halves completed on different occasions, and then (ii) taking the

mean of the reliabilities so obtained for the two groups. 

Schmidt et al.’s (2003) proposal could be labelled a staggered

equivalent (adjusted Spearman-Brown) split-half procedure.

Although it also makes provision for the situation where two

parallel test forms are indeed available, the more common

situation where there is only one test form will be considered

here. Their procedure also requires that the test be divided into

two strictly parallel test halves and that these two halves are

administered on separate occasions. Their CE estimate is

compiled in the same manner as in the case of Becker (2000)

except that they drop the counter-balancing requirement. Thus

the mean of coefficient alpha for the two half-tests (which

yields the coefficient of equivalence, ce, for a half-test) is

stepped up by a factor of 2 by means of the Spearman-Brown

formula to give the coefficient of equivalence, CE, for the full-

length test. However, Schmidt et al. developed the following

adjustment to the Spearman-Brown formula to obtain a CES for

the full-length test:

CES = [2(ces)]/[(1 + ce)],

where ce is the coefficient of equivalence, defined earlier, for a

half-test, and ces, is the coefficient of equivalence and stability of

a half-test obtained by correlating the scores obtained on two

strictly parallel test halves administered on two different

occasions.

Green (2003) proposed a test-retest alpha that does not call for

the test to be split into two parallel test halves but requires that

the same full-length test be administered on two separate

occasions. He developed an adjusted formula for Cronbach’s

coefficient alpha,

Test-retest alpha = [J/(J – 1)][(�1�2�j1,k2)/(�1�2)], j � k,

where �1�2�j1,k2 is the sum of the covariances of every item

performed on the first occasion and every other item performed

on the second occasion. As in the case of the regular coefficient

alpha, the development of Green’s test-retest alpha assumes that

the items are essentially tau-equivalent. Just as in the case of the

regular coefficient alpha, the numerator of the ratio on the

rightmost side of the preceding equation is equal to the sum of all

the off-diagonal entries of an item variance-covariance matrix but

in the present case, the columns of this matrix refer to the items

administered on the first occasion and the rows represent the

(same) items administered on the second occasion. As in any

variance-covariance matrix, there are J(J – 1) covariance terms in

this matrix where half of them are in the upper right triangle and

the other half are in the lower left triangle. However, in the present

case the one half is no longer a mirror image of the other, as in the

one half you would find, for example, the covariance of item j

administered on the first occasion, and item k administered on the

second occasion, whereas the corresponding entry in the other

half would be the covariance of item j administered on the second

occasion, and item k administered on the first occasion and these

two covariances need not be equal. The �1�2 in the preceding

equation is simply the product of the standard deviations of the

scores obtained on the two administrations of the test. 

The CES estimates in the above procedures rely on the covariances

of test halves or items pairs the members of which have been

administered on different occasions. As a result, they are less affect-

ed by memory effects than is the test-retest reliability coefficient.

None of them requires the time-consuming construction of strictly

parallel test forms as does the conventional coefficient of equiva-

lence and stability. The procedures proposed by Becker (2000) and

Schmidt et al. (2003), however, do require the complicated

procedure of dividing a test into two strictly parallel halves.

EMPIRICAL EVIDENCE ON THE RELATIVE 

SIZE OF TRANSIENT ERROR

Of course, if the proportion of transient-error variance is

negligible, it makes little sense to harp on the need to estimate

such error. However, available evidence suggests that transient

error variance cannot be dismissed lightly. The procedures

reviewed in the preceding section have made comparisons

possible between a CES estimate (susceptible to all three kinds of

measurement error) and a CE estimate (subject to specific-factor

and random response error only). As a result, the proportion of

transient error variance can be obtained by subtracting the

former from the latter. This proportion divided by the CES

estimate, multiplied by 100, gives the percentage by which the

partial reliability estimate overestimates the complete reliability

estimate. Becker (2000) administered the Buss-Perry Aggression

Questionnaire on two test occasions with a five-day interval in

between them. The CE and CES estimates were 0,791 and 0,777,

respectively, for the Anger scale for women. This corresponds to

a proportion of transient error variance of only 0,791 – 0,777 =

0,014, which means that the partial estimate overestimates the

complete estimate by a percentage of only 100(0,014/0,777) =

1,80. However, in the case of the Hostility scale of the same

questionnaire for men the corresponding coefficients were

0,809 and 0,679, respectively, which amounts to a proportion of

transient error variance of 0,130 and an overestimate of 19,15 %.

Schmidt et al. (2003) studied cognitive, personality and

affective measures administered approximately one week apart.

They found that transient error was present in all three of these

domains and that it was particularly potent in the domain of
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affective traits. For example, the positive affectivity measure of

the Positive and Negative Affect Schedule of Watson, Clark and

Tellegen yielded a CE estimate of 0,82, whereas its CES estimate

was only 0,63. The resulting estimate of the proportion of

transient error variance was 0,19, which translated into an

overestimate of 30,16 %. The corresponding reliability

coefficients for the negative affectivity measure of Diener and

Emmons’ Affect-Adjective Scale were 0,90 and 0,69, respectively,

yielding a transient error estimate of 0,21 and an overestimate of

30,43 %. Contrary to their expectations, these authors found that

the proportion of transient error variance for a measure in the

cognitive domain, namely, the Wonderlic Personnel Test, was

not less than that for measures of broad personality traits. For

example, the proportion of transient error variance in both the

Wonderlic and Rosenberg’s Self-Esteem Scale was found to be

0,05 with percentages of overestimation of 6,76 and 6,33,

respectively.

Schmidt et al. (2003) used Monte Carlo simulation methodology

to generate sampling distributions of among others the

estimated proportions of transient error variance. As the

standard deviations of these sampling distributions represented

the standard errors of these indices, confidence intervals could

be established. In none of the examples in the preceding

paragraph, except for the Rosenberg scale, did the 90%

confidence interval capture a value of zero, which in statistical

null hypothesis testing would have meant a failure to reject the

null hypothesis of a proportion of zero transient error at the 5 %

significance level (one-tailed). 

The mean coefficient alpha for Green’s (2003) two admini-

strations of a four-item Emotional Expression Scale with a four-

week interval was equal to (0,861 + 0,931)/2 = 0,896 and the test-

retest alpha was 0,735. In terms of the methodology used above,

the proportion of transient error variance and the percentage

overestimation were therefore 0,161, and 21,90, respectively.

COMPARISON WITH GENERALISABILITY THEORY

The reliability estimation methods of classical test theory (test-

retest, parallel-forms with or without an extended interval, split-

half, and coefficient alpha) are aimed at arriving at a reliability

coefficient with no interest in differentiating between the various

sources of measurement error (transient, specific-factor, etc.) that

may attenuate the obtained reliability coefficient. Generalisability

theory, by contrast, focusses on the separate estimation of the

various sources of error variation (in a measurement procedure),

called facets, such as test occasion, test items and their respective

interactions with participants. The sampled elements of any of

these facets are called conditions. Thus test items may constitute

the conditions of the item facet, where the composites of items

now conform to randomly parallel tests rather than the strictly

parallel tests of classical test theory. Typically the test user does not

wish the test scores obtained to be relevant only to the occasion on

which the test was administered, or only to the particular set of

items contained in the test form that was used. Instead, he or she

would like to obtain comparable results if the measurement

procedure was performed on any other equally acceptable

occasion, or if another set of equally acceptable items was applied.

This means that the test user wishes to generalise his or her test

results to a large universe of conditions of which only a sample

from each facet was used in his or her particular application.

The main objective of a generalisability study is to

simultaneously estimate the variance (components) associated

with test participants, with the conditions of each of the

respective facets and with the interactions between these

sources. Ideally this calls for a design in which each condition of

every relevant facet is completely crossed with each condition of

every other facet and with each participant. It uses random-

effects (and mixed-effects) analysis of variance to separately

estimate the variance (component) associated with each of the

resulting main and interaction effects. The variance component

for the main effect due to participants corresponds to the true-

score variance of classical test theory, whereas all the other

variance components reflect some or other kind of error

variance. For example, if every participant in a group of

participants completes every item on each of two or more

occasions, generalisability theory allows for the estimation of

each of the variance components in the following extension of

Equation (2):

�²observed = �²participants(p) + �²occasion(o) + �²items(i) + �²po + �²pi + �²oi

+ �²residual, (6)

where �²participants(p) corresponds to the true-score variance of

classical test theory; �²occasion(o) is the variance attributable to test

occasions; �²items(i) is the variance due to items; �²po is the

variance associated with the participant-occasion interaction

(i.e., transient error), �²pi is the variance ascribed to the

participant-item interaction (i.e., specific-factor error); �²oi is the

item-occasion interaction variance and �²residual is the residual

error variance.

The data collection design implied by Green’s (2003) test-retest

procedure conforms exactly to such a completely-crossed three-

factor design with one observation per cell, so that it allows for

each of the variance components in Equation (6) to be

estimated. Tabel 1 is the result of the application of the

procedures described by Shavelson and Webb (1991) on the data

Green used for computing his test-retest alpha and which are

given in an appendix to his article. Unlike the reliability

coefficient which, as a correlation coefficient, is expressed in a

universal metric, the results of a generalisability study may be

reported in terms of the percentages of the total variance that are

accounted for by the respective sources of variation. The largest

variance component in Table 1, namely, that for test participants

(56,25%), represents the variance component for universe (true)

scores. Next highest is the variance component for the residual

error (25,87%) which represents the variance due to the three-

way interaction plus random response error. The variances of

zero for items and occasions are to be expected as under the

assumption of parallelism in Green’s example, these sources

should show no variation. The variance component for the

participant-occasion interaction (transient error) is higher than

that for the participant-item interaction (specific-factor error).

TABLE 1

ESTIMATED VARIANCE COMPONENTS

Source of Variation df Mean Est. Variance %

Square Component

Persons (p) 39 4,4218 0,4630 56,25

Items (i) 3 0,0166 0 0

Occasions (o) 1 0,0125 0 0

p × i 117 0,2966 0,0418 5,08

p × o 39 0,3643 0,1053 12,80

i × o 3 0,1125 0 0

p × i × o,e 117 0,2129 0,2129 25,87

In the case of Becker (2000) and Schmidt et al. (2003) a different

set of items is administered on different occasions so that in

their designs items are nested within occasions. As a result, their

designs do not allow for the estimation of the variance due to

the item-occasion interaction, which is of little interest in any

case, or for the estimation of the variance component for the

participant-item interaction separately from the residual error

variance. In all three procedures reviewed above, the proposed

data analysis nevertheless extracts only two estimates of a

confounded source of error variation – one in which transient
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error variance is included and one in which it is excluded. By

subtracting the former from the latter in a follow-up analysis, an

estimate of transient error variance is obtained. However, none

of these procedures provides for the estimation of the specific-

factor or residual error variance. If specific-factor error is more

detrimental to reliability than is transient error, none of them

would be able to detect it. It could be said that these designs

underutilise the data that are collected in terms of them.

Generalisability theory has a further advantage in that it

provides clear guidelines for the reduction of those sources of

error variation that have been shown up by a generalisability

study to be unacceptably high. On the basis of the

generalisability study results, a prospective user of the

measurement procedure may design a decision study to

estimate the generalisability attendant on his or her intended

use of the procedure. This may lead to a decision to sample

more heavily from a facet that the generalisability study has

revealed to have an unacceptably high error variance. The

principle involved here is similar to that which underlies that

reformulation of the Spearman-Brown formula that allows one

to determine the number of items that is required to reduce

specific-factor error variance and, hence, improve reliability

satisfactorily. For example, the results of a decision study may

reveal that reliability is best improved by administering the

same number of items on more occasions (and averaging over

occasions) rather than by increasing the number of items. By

contrast, the three procedures reviewed above not only are

unable to identify the more potent source of error variation

but they are also silent about any suggested course of action in

situations in which a particular source of error variation is

found to be unacceptably high.

For example, in terms of the data in Table 1 one could compute

a generalisability coefficient (Shavelson & Webb, 1991), the

counterpart of the reliability coefficient of classical test theory,

for several possible applications of the measurement procedure

in Green’s (2003) example. For four items administered on two

occasions, the generalisability coefficient is computed to be

equal to 0,716. If the number of items is increased by 50 % (so

that six items are administered on two occasions),

generalisability increases to 0,857. If the number of test

occasions is increased by the same percentage (so that four items

are administered on three occasions), generalisability is raised to

0,880. With transient error accounting for a greater proportion

of error variation than does specific-factor error (cf. Table 1), it

is to be expected that generalisability will benefit to a greater

extent by an increase in the number of test occasions than by an

increase in the number of items.

Finally, unlike classical test theory, generalisability theory also

makes it possible to estimate generalisability in contexts where

absolute rather than relative decisions are called for. Relative

decisions are at stake when the purpose of measurement is to

choose a certain number of participants with the highest scores

(for the purpose of hiring, promotion or the granting of

bursaries, for example). In the case of absolute decisions, tests

are used to determine which participants achieve a score above

a fixed cut-off value as is typically required in criterion-

referenced measurement. An example of this would occur when

applicants for a driver’s license have to score above a particular

minimum value on a test of traffic regulations to qualify for a

learner’s driver license irrespective of the number of candidates

who fail to reach this cut-off score.

Despite the advantages afforded by generalisability theory, the

statistically intimidating nature of this extensive approach

seems to have thwarted its general acceptance in psychological

research. In the Hogan et al. (2000) survey referred to above, not

a single generalisability study had been identified. However,

their review probably failed to do justice to the popularity of

this methodology, as it has seemed to be more useful and

popular in educational research. It is particularly well suited to

evaluating reliability in performance assessment (such as that

involved in outcomes-based research) where the raters of

learners’ performance represent an important source of error

variance (cf. Cronbach, Linn, Brennan & Haertel, 1997).

As indicated earlier, a proper understanding of generalisability

theory requires a sound knowledge of multi-factor analysis of

variance and not the more common fixed-effects variety but the

lesser known random-effects model. Applied psychologists

possibly may argue that they use tests in a much simpler context

than that catered for by generalisability theory. For example,

they may argue that their use of multiple measures of the same

construct reduces the magnitude of specific-factor error

variance. The appeal of Becker (2000), Schmidt et al. (2003) and

Green’s (2003) procedures lies in their being developed within

the simpler classical test theory tradition and their results being

expressed in the same metric as the reliability coefficient. This

possibly may improve these procedures’ chances of being

accepted more widely among psychologists who are concerned

about transient error. 

DISCUSSION

One of the ironies of psychological test theory and practice is

that, conceptually, reliability implies consistency across time –

notice the terms retested and repeated administration in the

definitions in the first section – whereas coefficient alpha, the

reliability estimation procedure of overwhelming choice, relies

on a single test occasion only. This popularity can only be

justified if the various reliability estimation methods, including

coefficient alpha, may be viewed as interchangeable for the

purposes of estimating (the same) measurement error. However,

the empirical evidence reviewed in this article suggests that the

virtually universal use of coefficient alpha as method of

reliability estimation comes at a price. If scores on a test are

susceptible to occasional fluctuations in participants’ mood or

motivation, such transient error can be estimated only if the test

or part of it is administered on more than one occasion. In the

absence of such retesting all estimation methods will result in

overestimates.

One of the tenets of generalisability theory is that what

constitutes measurement error and what represents true-score

variance depends on the purpose of measurement. Suppose the

test includes all possible items that could be formulated so that

no parallel test form is feasible and generalising over test forms

is, therefore, not called for. In such a case, specific-factor

variance should not be treated as error variance but should be

incorporated into true-score variance. However, instances where

no generalisation over time is intended must be relatively rare.

Such situations would tend to run counter to the very notion

that led to the conceptualisation of psychometric reliability in

the first place.

Although researchers who use tests developed earlier by others

may be excused for relying on the partial reliability estimates

provided by the original test developer, the latter party cannot

similarly be exempted. Test users nevertheless should be aware

of the inadequacy of partial estimates and they should clearly

identify the estimation method that the original test developer

had used.

If specific-factor error and transient error are the only sources of

error that are suspected of being present, and if there is no

interest in estimating them separately, the above procedures for

estimating complete reliability may be sufficient. Although

generalisability may present a more comprehensive procedure

for estimating error components separately, this approach itself

is unable to compensate for the failure to apply a test, or part of

it, on different occasions if transient error is present. As far as the

estimation of complete reliability is concerned, it is indeed a

case of no psychometric gain without test readministration pain.
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